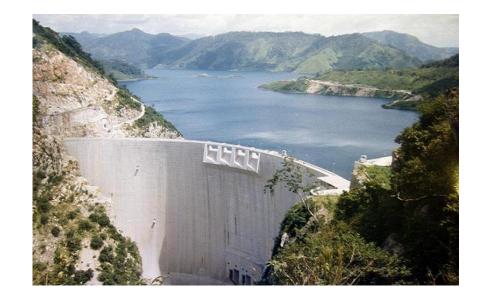


Liceos UdeSantiago

Administración delegada a la UNIVERSIDAD DE SANTIAGO DE CHILE


HIDRÁULICA

INTRODUCCIÓN

- La palabra Hidráulica proviene del griego "hydor" que significa agua.
- Es la ciencia que estudia la transferencia de energía que ocurre cuando se empuja a un fluido líquido, el cual es su medio transmisor.

 Suelen emplearse aceites minerales pero también líquidos sintéticos, agua o una emulsión agua-aceite.

 La ventaja que implica la utilización de la hidráulica es la posibilidad de transmitir grandes presiones de trabajo (hasta 700 bar).

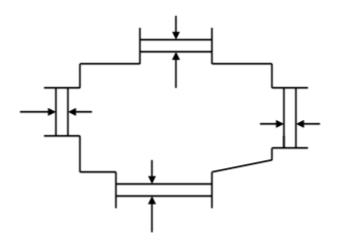
Fundamentos Físicos

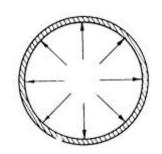
LA PRESIÓN (P)

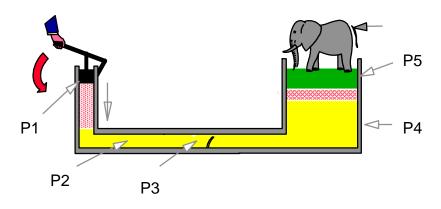
Es el resultado de una fuerza aplicada a la superficie de un cuerpo (N/m²).

Su unidad según el S.I. es el Pascal (Pa), aunque también se suele expresa en:

- N/m²= 1 Pa
- bares → 1 bar= 10⁵Pa
- Psi(libra por pulgada cuadrada) = 0.06895 bar
- Kg /cm² ~ Kp/cm² ~ bar

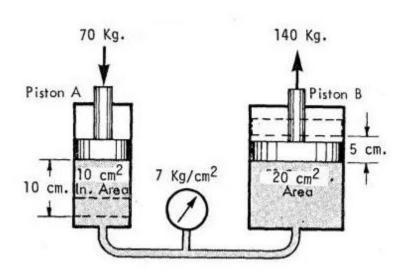

El manómetro es el instrumento que se usa para medir la presión.




Principio de Pascal

"La presión existente en un líquido confinado (encerrado) actúa igualmente en todas direcciones, y lo hace formando ángulos rectos con la superficie del recipiente".

Esta es la ley más elemental de la física referida a la hidráulica.



$$P_1 = P_2 = P_3 = P_4 = P_5$$

Aplicación de la Ley de Pascal por Bramah

Joseph Bramah, utilizó el descubrimiento de Pascal para fabricar una prensa hidráulica.

- Si una pequeña fuerza, actúa sobre un área pequeña, ésta creará una fuerza proporcionalmente mas grande sobre una superficie mayor.
- ✓ Propagación de la presión
- ✓ Multiplicación de la fuerza
- ✓ Multiplicación de la presión
- ✓ Multiplicación de la distancia

CAUDAL VOLUMÉTRICO

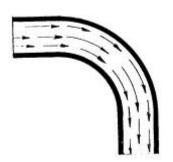
Es el volumen de un liquido que fluye a través de un tubo por un tiempo conocido.

$$Q=V/t$$

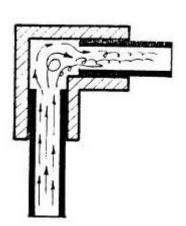
Para un cilindro:

$$V=AxS \rightarrow Q=(AxS)/t$$

- Q: caudal
- > V: volumen
- > t: tiempo
- A: área
- > S: carrera


 El caudal volumétrico de un líquido que fluye por un tubo de varios diámetros es igual en cualquier parte del tubo. Esto significa que el fluido a traviesa los segmentos más pequeños con mayor velocidad.

El flujo de fluidos en tuberías


Flujo laminar

Las capas de fluido se mueven en forma paralela una a la otra, las próximas a las paredes internas de la tubería lo hacen más lentamente, mientras que las cercanas al centro lo hacen rápidamente.

Flujo turbulento

Las partículas de fluido se mueven en forma desordenada con respecto a la dirección del flujo.

Excesos de velocidad de circulación
Cambios bruscos del diámetro de tubería
Rugosidad interna de la tubería